Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.453
Filtrar
1.
Mol Biol Rep ; 51(1): 385, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438773

RESUMO

BACKGROUND: Glioblastoma, a highly aggressive form of brain cancer, poses significant challenges due to its resistance to therapy and high recurrence rates. This study aimed to investigate the expression and functional implications of CDKN2A, a key tumor suppressor gene, in glioblastoma cells, building upon the existing background of knowledge in this field. METHOD: Quantitative reverse transcription PCR (qRT-PCR) analysis was performed to evaluate CDKN2A expression in U87 glioblastoma cells compared to normal human astrocytes (NHA). CDKN2A expression levels were manipulated using small interfering RNA (siRNA) and CDKN2A overexpression vector. Cell viability assays and carmustine sensitivity tests were conducted to assess the impact of CDKN2A modulation on glioblastoma cell viability and drug response. Sphere formation assays and western blot analysis were performed to investigate the role of CDKN2A in glioblastoma stem cell (GSC) self-renewal and pluripotency marker expression. Additionally, methylation-specific PCR (MSP) assays and demethylation treatment were employed to elucidate the mechanism of CDKN2A downregulation in U87 cells. RESULT: CDKN2A expression was significantly reduced in glioblastoma cells compared to NHA. CDKN2A overexpression resulted in decreased cell viability and enhanced sensitivity to carmustine treatment. CDKN2A inhibition promoted self-renewal capacity and increased pluripotency marker expression in U87 cells. CDKN2A upregulation led to elevated protein levels of p16INK4a, p14ARF, P53, and P21, which are involved in cell cycle regulation. CDKN2A downregulation in U87 cells was associated with high promoter methylation, which was reversed by treatment with a demethylating agent. CONCLUSION: Our findings demonstrate that CDKN2A downregulation in glioblastoma cells is associated with decreased cell viability, enhanced drug resistance, increased self-renewal capacity, and altered expression of pluripotency markers. The observed CDKN2A expression changes are mediated by promoter methylation. These results highlight the potential role of CDKN2A as a therapeutic target and prognostic marker in glioblastoma.


Assuntos
Carmustina , Glioblastoma , Humanos , Carmustina/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Células-Tronco , Genes p16 , Metilação , Inibidor p16 de Quinase Dependente de Ciclina/genética
2.
J Ethnopharmacol ; 325: 117907, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38342156

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Patrinia villosa (Juss.) (PV) is the drug of choice in traditional Chinese medicine for the treatment of colorectal cancer (CRC) and has achieved reliable efficacy in clinic. Villosol is the active ingredient in PV. However, the molecular mechanism by which Villosol reverses chemoresistance in CRC remains unclear. AIM OF THE STUDY: Analysis of the molecular mechanism by which Villosol, the active ingredient of PV, reverses CRC/5-FU resistance through modulation of the CDKN2A gene was validated by network pharmacology techniques and experiments. MATERIALS AND METHODS: We identified CDKN2A as a gene associated with 5-FU resistance through gene chip analysis. Next, we conducted a series of functional analyses in cell lines, animal samples, and xenograft models to investigate the role, clinical significance, and abnormal regulatory mechanisms of CDKN2A in 5-FU resistance in CRC. In addition, we screened and obtained a raw ingredient called Villosol, which targets CDKN2A, and investigated its pharmacological effects. RESULTS: Analysis of CRC cells and animal samples showed that the upregulation of CDKN2A expression was strongly associated with 5-FU resistance. CRC cells overexpressing CDKN2A showed reduced sensitivity to 5-FU and enhanced tumor biology in vitro. Inhibition of aberrant activation of CDKN2A enhances the expression of TP53. Mechanistically, overexpression of CDKN2A activates the PI3K/Akt pathway and induces resistance to 5-FU. Villosol inhibited CDKN2A, and CRC/5-FU cells regained sensitivity to 5-FU. Villosol effectively reverses 5-FU resistance through the CDKN2A-TP53-PI3K/Akt axis. CONCLUSION: Changes in CDKN2A gene expression can be used to predict the response of CRC patients to 5-FU therapy. Additionally, inhibiting CDKN2A activation with Villosol may present a new approach to overcoming 5-FU resistance in clinical settings.


Assuntos
Neoplasias Colorretais , Lactonas , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Genes p16 , Linhagem Celular Tumoral , Apoptose , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Proteína Supressora de Tumor p53/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/farmacologia
3.
Medicine (Baltimore) ; 103(2): e36801, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38215148

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with clinical and pathological heterogeneity. Recent studies have identified cuproptosis as a novel cell death mechanism. However, the role of cuproptosis-related genes in the pathogenesis of IPF is still unclear. Two IPF datasets of the Gene Expression Omnibus database were studied. Mann-Whitney U test, correlation analysis, functional enrichment analyses, single-sample gene set enrichment analysis, CIBERSORT, unsupervised clustering, weighted gene co-expression network analysis, and receiver operating characteristic curve analysis were used to conduct our research. The dysregulated cuproptosis-related genes and immune responses were identified between IPF patients and controls. Two cuproptosis-related molecular clusters were established in IPF, the high immune score group (C1) and the low immune score group (C2). Significant heterogeneity in immunity between clusters was revealed by functional analyses results. The module genes with the strongest correlation to the 2 clusters were identified by weighted gene co-expression network analysis results. Seven hub genes were found using the Cytoscape software. Ultimately, 2 validated diagnostic biomarkers of IPF, CDKN2A and NEDD4, were obtained. Subsequently, the results were validated in GSE47460. Our investigation illustrates that CDKN2A and NEDD4 may be valid biomarkers that were useful for IPF diagnosis and copper-related clustering.


Assuntos
Genes p16 , Fibrose Pulmonar Idiopática , Humanos , Morte Celular , Análise por Conglomerados , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/genética , Biomarcadores
4.
Melanoma Res ; 34(1): 9-15, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37924530

RESUMO

Familial melanoma is defined as melanoma occurring in two or more first-degree relatives by the WHO. Germline mutations are isolated in a subset of them. It is well known that CDKN2A is the most frequently mutated high-risk gene in familial melanoma, however, the prognosis it confers to patients who carry its mutations is still controversial. This review aims to assess whether germline mutations imply a worse prognosis in patients with familial melanoma. A systematic review and meta-analysis were conducted by searching the electronic databases PubMed/MEDLINE, EMBASE, and Cochrane Library. Data from 3 independent populations were eventually included in the meta-analysis, involving 291 cases and 57 416 controls. The results of this systematic review and meta-analysis suggest that there is a tendency for patients with germline mutations in the CDKN2A gene to have a worse overall survival (HR = 1.30, 95% CI = 0.99-1.69, P  = 0.05) and melanoma-specific survival (HR = 1.5, 95% CI = 0.97-2.31, P  = 0.07). Carrier patients would not only have more incidence of melanoma and a higher risk of a second melanoma, but they also seem to have a worse prognosis. The inclusion of gene panel testing in clinical practice and the collaboration within consortia are needed to provide further evidence on the prognosis of these patients.


Assuntos
Síndrome do Nevo Displásico , Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Neoplasias Cutâneas/genética , Genes p16 , Mutação em Linhagem Germinativa , Inibidor p16 de Quinase Dependente de Ciclina/genética , Mutação , Prognóstico , Predisposição Genética para Doença
5.
Aging (Albany NY) ; 15(23): 14422-14444, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38078879

RESUMO

BACKGROUND: Recently, there has been a great deal interest in cuproptosis, a form of programmed cell death that is mediated by copper. The specific mechanism through which cuproptosis-related genes impact the development of colorectal cancer (CRC) remains unknown. METHODS: Here, we combined bulk RNA-seq with scRNA-seq to investigate the CRGs functions within CRC. A number of 61 cuproptosis-related genes were chosen for further investigation. Nine prognostic CRGs were identified by Lasso-Cox. The RiskScore was created and the patients have been separated into two different groups, low- and high-RiskScore group. The CIBERSORT, ESTIMATE, MCP-counter, TIDE, and IPS have been employed to score the TME, and GSVA and GSEA were utilized to evaluate the pathway within the both groups. Further, we used cell communication analysis to explore the tumor microenvironment remodeling mechanisms of the COX17 and DLAT based on scRNA-seq. Finally, we used IHC and qPCR to validate the expression of COX17 and DLAT. RESULTS: AOC3, CCS, CDKN2A, COX11, COX17, COX19, DLD, DLAT, and PDHB have been recognized as prognostic CRGs in CRC. The high-risk group exhibited the worst prognosis, an immune-deficient phenotype, and were more resistant to ICB treatment. Further, scRNA-seq analysis revealed that elevated expression of COX17 in CD4-CXCL13Tfh could contribute to the immune evasion while DLAT had the opposite effect, reversing T cell exhaustion and inducing pyroptosis to boost CD8-GZMKT infiltration. CONCLUSIONS: The current investigation has developed a prognostic framework utilizing cuproptosis-related genes that is highly effective in predicting prognosis, TME type, and response to immunotherapy in CRC patients. Furthermore, our study reveals a novel finding that elevated levels of COX17 expression within CD4-CXCL13 T cells in CRC mediates T cell exhaustion and Treg infiltration, while DLAT has been found to facilitate the anti-tumor immunity activation through the T cell exhaustion reversal and the induction of pyroptosis.


Assuntos
Neoplasias Colorretais , Microambiente Tumoral , Humanos , RNA-Seq , Prognóstico , Microambiente Tumoral/genética , Genes p16 , Apoptose , Cobre , Neoplasias Colorretais/genética
6.
Cancer Discov ; 13(11): 2310-2312, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909092

RESUMO

SUMMARY: CDKN2A encodes the tumor suppressors p16 and p14ARF and is the most common homozygously deleted gene in all human cancers; tumors frequently codelete the nearby gene MTAP, creating a dependency on PRMT5. In this issue of Cancer Discovery, Engstrom and colleagues report an MTA-cooperative PRMT5 methyltransferase inhibitor MRTX1719 that selectively kills CDKN2A/MTAP-codeleted cancers and demonstrates early efficacy in clinical trials for solid tumors harboring the CDKN2A/MTAP codeletion. See related article by Engstrom et al., p. 2412 (1).


Assuntos
Neoplasias , Humanos , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidores Enzimáticos/uso terapêutico , Deleção de Genes , Genes p16 , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteína-Arginina N-Metiltransferases/genética
7.
Medicine (Baltimore) ; 102(46): e36097, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37986320

RESUMO

Tongue squamous cell carcinoma (TSCC) has a poor prognosis and destructive characteristics. Reliable biomarkers are urgently required to predict disease outcomes and to guide TSCC treatment. This study aimed to develop a multigene signature and prognostic nomogram that can accurately predict the prognosis of patients with TSCC. We screened differentially expressed genes associated with TSCC using The Cancer Genome Atlas dataset. Based on this, we developed a new multi-mRNA gene signature using univariate Cox regression, Least Absolute Shrinkage and Selection Operator regression, and multivariate Cox regression. We used the concordance index to evaluate the accuracy of this new multigene model. Moreover, we performed receiver operating characteristic and Kaplan-Meier survival analyses to assess the predictive ability of the new multigene model. In addition, we created a prognostic nomogram incorporating clinical and pathological characteristics, with the aim of enhancing the adaptability of this model in practical clinical settings. We successfully developed a new prognostic model based on the expression levels of these 3 mRNAs that can be used to predict the prognosis of patients with TSCC. This prediction model includes 3 genes: KRT33B, CDKN2A, and CA9. In the validation set, the concordance index of this model was 0.851, and the area under the curve was 0.778 and 0.821 in the training and validation sets, respectively. Kaplan-Meier survival analysis showed that regardless of whether it was in the training or validation set, the prognosis of high-risk patients was significantly worse than that of low-risk patients (P < .001). Multivariate Cox regression analysis revealed that this model was an independent prognostic factor for patients with TSCC (P < .001). Our study suggests that this 3-gene signature model has a high level of accuracy and predictive ability, is closely related to the overall survival rate of patients with TSCC, and can independently predict the prognosis of TSCC patients with high accuracy and predictive ability.


Assuntos
Carcinoma de Células Escamosas , Neoplasias da Língua , Humanos , Neoplasias da Língua/genética , Prognóstico , Carcinoma de Células Escamosas/genética , Nomogramas , Genes p16 , RNA Mensageiro
8.
Aging (Albany NY) ; 15(20): 11244-11267, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857018

RESUMO

BACKGROUND: Before the discovery of cuproptosis, copper-loaded nanoparticle is a wildly applied strategy for enhancing the tumor-cell-killing effect of chemotherapy. Although copper(ii)-related researches are wide, details of cuproptosis-related bioprocess in pan-cancer are not clear yet now, especially for prognosis and drug sensitivity prediction yet now. METHODS: In this study, VOSviewer is used for the literature review, and R4.2.0 is used for data analysis. Public data are collected from TCGA and GEO, local breast cancer cohort is collected to verify the expression level of CDKN2A. RESULTS: 7036 published articles exhibited a time-dependent linear relationship (R=0.9781, p<0.0001), and breast cancer (33.4%) is the most researched topic. Cuproptosis-related-genes (CRGs)-based unsupervised clustering divides pan-cancer subgroups into four groups (CRG subgroup) with differences in prognosis and tumor immunity. 44 tumor-driver-genes (TDGs)-based prediction model of drug sensitivity and prognosis is constructed by artificial intelligence (AI). Based on TDGs and clinical features, a nomogram is (C- index: 0.7, p= 6.958e- 12) constructed to predict the prognosis of breast cancer. Importance analysis identifies CDKN2A has a pivotal role in AI modeling, whose higher expression indicates worse prognosis in breast cancer. Furthermore, inhibition of CDKN2A down-regulates decreases Snail1, Twist1, Zeb1, vimentin and MMP9, while E-cadherin is increased. Besides, inhibition of CDKN2A also decreases the expression of MEGEA4, phosphorylated STAT3, PD-L1, and caspase3, while cleaved-caspase3 is increased. Finally, we find down-regulation of CDKN2A or MAGEA inhibits cell migration and wound healing, respectively. CONCLUSIONS: AI identified CRG subgroups in pan-cancer based on CRGs-related TDGs, and 44-gene-based AI modeling is a novel tool to identify chemotherapy sensitivity in breast cancer, in which CDKN2A/MAGEA4 pathway played the most important role.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Inteligência Artificial , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Cobre , Inibidor p16 de Quinase Dependente de Ciclina , Genes p16 , Apoptose
9.
Sci Rep ; 13(1): 12728, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543674

RESUMO

Colon adenocarcinoma (COAD), one of the common clinical cancers, exhibits high morbidity and mortality, and its pathogenesis and treatment are still underdeveloped. Numerous studies have demonstrated the involvement of bile acids in tumour development, while the potential role of their metabolism in the tumor microenvironment (TME) has not been explored. A collection of 481 genes related to bile acid metabolism were obtained, and The Cancer Genome Atlas-based COAD risk model was developed using the least absolute shrinkage selection operator (LASSO) regression analysis. The Gene Expression Omnibus dataset was used to validate the results. The predictive performance of the model was verified using column line plots, principal component analysis and receiver operating characteristic curves. Then, we analysed the differences between the high- and low-risk groups from training set based on clinical characteristics, immune cell infiltration, immune-related functions, chemotherapeutic drug sensitivity and immunotherapy efficacy. Additionally, we constructed a protein-protein interaction network to screen for target genes, which were further investigated in terms of differential immune cell distribution. A total of 234 bile acids-related differentially expressed genes were obtained between normal and tumour colon tissues. Among them, 111 genes were upregulated and 123 genes were down-regulated in the tumour samples. Relying on the LASSO logistic regression algorithm, we constructed a model of bile acid risk score, comprising 12 genes: CPT2, SLCO1A2, CD36, ACOX1, CDKN2A, HADH, GABRD, LEP, TIMP1, MAT1A, SLC6A15 and PPARGC1A. This model was validated in the GEO-COAD set. Age and risk score were observed to be independent prognostic factors in patients with COAD. Genes related to bile acid metabolism in COAD were closely related to bile secretion, intestinal transport, steroid and fatty acid metabolism. Furthermore, the high-risk group was more sensitive to Oxaliplatin than the low-risk group. Finally, the three target genes screened were closely associated with immune cells. We identified a set of 12 genes (CPT2, SLCO1A2, CD36, ACOX1, CDKN2A, HADH, GABRD, LEP, TIMP1, MAT1A, SLC6A15, and PPARGC1A) associated with bile acid metabolism and developed a bile acid risk score model using LASSO regression analysis. The model demonstrated good predictive performance and was validated using an independent dataset. Our findings revealed that the bile acid risk score were independent prognostic factors in COAD patients.


Assuntos
Adenocarcinoma , Sistemas de Transporte de Aminoácidos Neutros , Neoplasias do Colo , Humanos , Prognóstico , Adenocarcinoma/genética , Neoplasias do Colo/genética , Genes p16 , Proteínas Inibidoras de Quinase Dependente de Ciclina , Ácidos e Sais Biliares , Microambiente Tumoral/genética , Proteínas do Tecido Nervoso
10.
Asian Pac J Cancer Prev ; 24(8): 2653-2666, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37642051

RESUMO

BACKGROUND: Today, acute lymphoblastic leukemia is one of the most common malignant diseases of the hematopoietic system. The genetic predisposition to ALL is not fully explored in various ethnic populations. OBJECTIVE: The study aimed to conduct a comparative analysis of the population frequencies of alleles and genotypes of polymorphic gene variants: immune regulation GATA3 (rs3824662); transcription and differentiation of B cells: ARID5B (rs7089424, rs10740055), IKZF1 (rs4132601); differentiation of hematopoietic cells: PIP4K2A (rs7088318); apoptosis: CEBPE (rs2239633), tumor suppressors: CDKN2A (rs3731249), TP53 (rs1042522); carcinogen metabolism: CBR3 (rs1056892), CYP1A1 (rs104894, rs4646903), according to genome-wide association studies analyses associated with the risk of developing pediatric beta-cell acute lymphoblastic leukemia (B-cell ALL), in an ethnically homogeneous population of Kazakhs with studied populations. METHODS: The genomic database consists of 1800 conditionally healthy persons of Kazakh nationality, genotyped using OmniChip 2.5-8 Illumina chips at the deCODE genetics as part of the InterPregGen 7 project of the European Union (EU) framework program under Grant Agreement No. 282540. RESULTS: High population frequencies of single nucleotide polymorphism (SNP) minor alleles identified for immune regulation genes - GATA3 rs3824662 - 42.5%; transcription and differentiation of B-cells genes - ARID5B rs7089424 - 33.1% and rs10740055 - 48.5%, which suggests their significant genetic contribution to the risk of development and prognosis of the effectiveness of B-cell ALL therapy in the Kazakh population. The significantly lower population frequency of the minor allele G rs1056892 CBR3 gene - 38.6% in the Kazakhs suggests its significant protective effect in reducing the risk of childhood B-cell ALL and the smaller number of cardiac complications after anthracycline therapy. CONCLUSION: The obtained results will serve as a basis for developing effective methods for predicting the risk of development, early diagnosis, and effectiveness of treatment of B-cell ALL in children.


Assuntos
Estudo de Associação Genômica Ampla , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Genótipo , Genes p16 , Predisposição Genética para Doença , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fosfotransferases (Aceptor do Grupo Álcool)
11.
Am J Hematol ; 98(10): 1627-1636, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37605345

RESUMO

Our knowledge of genetic aberrations, that is, variants and copy number variations (CNVs), associated with mantle cell lymphoma (MCL) relapse remains limited. A cohort of 25 patients with MCL at diagnosis and the first relapse after the failure of standard immunochemotherapy was analyzed using whole-exome sequencing. The most frequent variants at diagnosis and at relapse comprised six genes: TP53, ATM, KMT2D, CCND1, SP140, and LRP1B. The most frequent CNVs at diagnosis and at relapse included TP53 and CDKN2A/B deletions, and PIK3CA amplifications. The mean count of mutations per patient significantly increased at relapse (n = 34) compared to diagnosis (n = 27). The most frequent newly detected variants at relapse, LRP1B gene mutations, correlated with a higher mutational burden. Variant allele frequencies of TP53 variants increased from 0.35 to 0.76 at relapse. The frequency and length of predicted CNVs significantly increased at relapse with CDKN2A/B deletions being the most frequent. Our data suggest, that the resistant MCL clones detected at relapse were already present at diagnosis and were selected by therapy. We observed enrichment of genetic aberrations of DNA damage response pathway (TP53 and CDKN2A/B), and a significant increase in MCL heterogeneity. We identified LRP1B inactivation as a new potential driver of MCL relapse.


Assuntos
Linfoma de Célula do Manto , Humanos , Adulto , Linfoma de Célula do Manto/diagnóstico , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Variações do Número de Cópias de DNA , Recidiva Local de Neoplasia , Genes p16 , Evolução Clonal/genética
12.
Mycotoxin Res ; 39(3): 271-283, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37328702

RESUMO

Fumonisin B1 (FB1) poses a risk to animal and human health. Although the effects of FB1 on sphingolipid metabolism are well documented, there are limited studies covering the epigenetic modifications and early molecular alterations associated with carcinogenesis pathways caused by FB1 nephrotoxicity. The present study investigates the effects of FB1 on global DNA methylation, chromatin-modifying enzymes, and histone modification levels of the p16 gene in human kidney cells (HK-2) after 24 h exposure. An increase (2.23-fold) in the levels of 5-methylcytosine (5-mC) at 100 µmol/L was observed, a change independent from the decrease in gene expression levels of DNA methyltransferase 1 (DNMT1) at 50 and 100 µmol/L; however, DNMT3a and DNMT3b were significantly upregulated at 100 µmol/L of FB1. Dose-dependent downregulation of chromatin-modifying genes was observed after FB1 exposure. In addition, chromatin immunoprecipitation results showed that 10 µmol/L of FB1 induced a significant decrease in H3K9ac, H3K9me3 and H3K27me3 modifications of p16, while 100 µmol/L of FB1 caused a significant increase in H3K27me3 levels of p16. Taken together, the results suggest that epigenetic mechanisms might play a role in FB1 carcinogenesis through DNA methylation, and histone and chromatin modifications.


Assuntos
Cromatina , Fumonisinas , Humanos , Fumonisinas/toxicidade , Genes p16 , Código das Histonas , Histonas , Rim/metabolismo
13.
Sci Rep ; 13(1): 10020, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340028

RESUMO

Head and neck squamous carcinoma (HNSC) induces high cancer-related death worldwide. The biomarker screening on diagnosis and prognosis is of great importance. This research is aimed to explore the specific diagnostic and prognostic biomarkers for HNSC through bioinformatics analysis. The mutation and dysregulation data were acquired from UCSC Xena and TCGA databases. The top ten genes with mutation frequency in HNSC were TP53 (66%), TTN (35%), FAT1 (21%), CDKN2A (20%), MUC16 (17%), CSMD3 (16%), PIK3CA (16%), NOTCH1 (16%), SYNE1 (15%), LRP1B (14%). A total of 1,060 DEGs were identified, with 396 up-regulated and 665 downregulated in HNSC patients. Patients with lower expression of ACTN2 (P = 0.039, HR = 1.3), MYH1 (P = 0.005, HR = 1.5), MYH2 (P = 0.035, HR = 1.3), MYH7 (P = 0.053, HR = 1.3), and NEB (P = 0.0043, HR = 1.5) exhibit longer overall survival time in HNSC patients. The main DEGs were further analyzed by pan-cancer expression and immune cell infiltration analyses. MYH1, MYH2, and MYH7 were dysregulated in the cancers. Compared with HNSC, their expression levels are lower in the other types of cancers. MYH1, MYH2, and MYH7 were expected to be the specific diagnostic and prognostic molecular biomarkers of HNSC. All five DEGs have a significant positive correlation with CD4+T cells and macrophages.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Genes p16 , Genes Reguladores , Mineração de Dados , Proteínas Inibidoras de Quinase Dependente de Ciclina , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/genética , Prognóstico , Biomarcadores Tumorais/genética
14.
Am J Dermatopathol ; 45(7): 454-462, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37130203

RESUMO

ABSTRACT: A definitive diagnosis of nevus or melanoma is not always possible for histologically ambiguous melanocytic neoplasms. In such cases, ancillary molecular testing can support a diagnosis of melanoma if certain chromosomal aberrations are detected. Current technologies for copy number variation (CNV) detection include chromosomal microarray analysis (CMA) and fluorescence in situ hybridization. Although CMA and fluorescence in situ hybridization are effective, their utilization can be limited by cost, turnaround time, and inaccessibility outside of large reference laboratories. Droplet digital polymerase chain reaction (ddPCR) is a rapid, automated, and relatively inexpensive technology for CNV detection. We investigated the ability of ddPCR to quantify CNV in cyclin-dependent kinase inhibitor 2A ( CDKN2A ), the most commonly deleted tumor suppressor gene in melanoma. CMA data were used as the gold standard. We analyzed 57 skin samples from 52 patients diagnosed with benign nevi, borderline lesions, primary melanomas, and metastatic melanomas. In a training cohort comprising 29 randomly selected samples, receiver operator characteristic curve analysis revealed an optimal ddPCR cutoff value of 1.73 for calling CDKN2A loss. In a validation cohort comprising the remaining 28 samples, ddPCR detected CDKN2A loss with a sensitivity and specificity of 94% and 90%, respectively. Significantly, ddPCR could also identify whether CDKN2A losses were monoallelic or biallelic. These pilot data suggest that ddPCR can detect CDKN2A deletions in melanocytic tumors with accuracy comparable with CMA. With further validation, ddPCR could provide an additional CNV assay to aid in the diagnosis of challenging melanocytic neoplasms.


Assuntos
Melanoma , Nevo de Células Epitelioides e Fusiformes , Neoplasias Cutâneas , Humanos , Variações do Número de Cópias de DNA , Genes p16 , Hibridização in Situ Fluorescente/métodos , Melanoma/diagnóstico , Melanoma/genética , Melanoma/patologia , Neoplasias Cutâneas/patologia , Nevo de Células Epitelioides e Fusiformes/genética , Reação em Cadeia da Polimerase , Inibidor p16 de Quinase Dependente de Ciclina/genética
15.
Medicine (Baltimore) ; 102(14): e33468, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37026918

RESUMO

Recent studies have identified a novel programmed cell death based on copper, named cuproptosis. However, as an anti-cuproptosis gene, the functional roles, definite mechanisms and prognostic value of CDKN2A in pan-cancer are largely unclear. The GEPIA2, cancer genome atlas (TCGA), the tumor immune estimation resource 2.0 and CPTAC databases were performed to validate the differential expression of CDKN2A in 33 tumors. The clinical features and survival prognosis analysis were conducted by GEPIA2 and UALCAN web tool. Genetic alteration analysis of CDKN2A in pan-cancer was also evaluated. Furthermore, the functional roles of CDKN2A were explored via DNA methylation analysis, tumor microenvironment, infiltration of immune cells, enrichment analysis and gene co-expression associated with cuproptosis and immune regulation. The CDKN2A expression, both at the transcriptional and translational level, was obviously upregulated in most cancer patients, which might lead to poor survival in certain cancer types. CDKN2A expression was significantly associated with tumor pathological stages in some cancer types. In adrenocortical carcinoma (ACC) and kidney renal clear cell carcinoma (KIRC), DNA methylation of CDKN2A was explored to induce poor clinical outcomes. Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis indicated that CDKN2A expression was closely related to several cancer-associated signaling pathways, such as the p53 signaling pathway, Cellular senescence, DNA replication and Cell cycle signaling pathways. Gene set enrichment analysis (GSEA) analysis suggested that aberrantly expressed CDKN2A took part in the cell cycle regulation, immune regulation and mitochondrial signaling pathways in certain cancer patients. In addition, aberrant CDKN2A expression was closely correlated to immune infiltration and the levels of immune-regulatory genes. The study deeply defined the concrete roles of cuproptosis-related gene CDKN2A in tumorigenesis. The results provided new insights and pieces of evidence for treatment.


Assuntos
Neoplasias do Córtex Suprarrenal , Apoptose , Carcinoma de Células Renais , Inibidor p16 de Quinase Dependente de Ciclina , Neoplasias Renais , Humanos , Inibidor p16 de Quinase Dependente de Ciclina/genética , Genes p16 , Prognóstico , Microambiente Tumoral/genética , Cobre , Imunoterapia
17.
Appl Immunohistochem Mol Morphol ; 31(5): 331-338, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37036407

RESUMO

BACKGROUND: The incidence of oral squamous cell carcinoma (OSCC) of the tongue is increasing in the younger population without traditional risk habits that lead researchers to find other related factors such as diet and viruses, especially human papillomavirus (HPV). It is noteworthy that many OSCCs develop from oral potentially malignant disorders (OPMDs). Correct diagnosis and timely management of OPMDs may help to prevent malignant transformation, and therefore it is worth seeing the involvement of HPV in OPMDs and oral cancers, as the preventive and curative measures in HPV-induced cancer types are different from the conventional types of OPMDs and OSCCs. Therefore, the main objective of this study was to identify a relationship between HPV and p16 in OPMDs and compare it with OSCC. METHODS: This study was conducted on 83 cases of known OSCCs and OPMDs (oral submucous fibrosis, leukoplakia, and oral lichen planus). Assays, such as polymerized chain reaction (PCR) and reverse transcription-PCR, were carried out for HPV and p16 . The results were compared with clinical information and with the literature. The results were analyzed using SPSS 16.0 for windows. RESULTS: P16 expression was mostly seen in males than in female patients. Out of 21 cases of keratosis with dysplasia, 19% expressed p16 . Of 26 oral lichen planus patients, 29% showed the p16 gene with immunohistochemistry. Interestingly, a high percentage of OSF cases expressed p16 (48.27%). Minimal expression was observed in OSCC (6.25%). HPV DNA was detected in 2.4% of the total sample. Both p16 and HPV were detected in a single case of OSCC. OPMDs expressed a significant amount of the p16 gene by immunohistochemistry and reverse transcription-PCR technique when compared with malignant lesions, suggesting a possible inactivation of the p16 gene. HPV and p16 are mostly negative in our OSCC sample, exhibiting low prevalence. CONCLUSIONS: OPMDs expressed a significant amount of the p16 gene when compared with malignant lesions, suggesting a possible inactivation of the p16 gene. Although OSF expressed p16 , HPV was not detected, suggesting that over-expression could be independent of HPV. OSCC shows low HPV prevalence.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Líquen Plano Bucal , Neoplasias Bucais , Infecções por Papillomavirus , Lesões Pré-Cancerosas , Feminino , Humanos , Masculino , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Genes p16 , Neoplasias de Cabeça e Pescoço/genética , Papillomavirus Humano , Neoplasias Bucais/patologia , Papillomaviridae/genética , Infecções por Papillomavirus/diagnóstico , Lesões Pré-Cancerosas/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
18.
Acta Neuropathol ; 146(1): 145-162, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37093270

RESUMO

Homozygous deletion of CDKN2A/B was recently incorporated into the World Health Organization classification for grade 3 meningiomas. While this marker is overall rare in meningiomas, its relationship to other CDKN2A alterations on a transcriptomic, epigenomic, and copy number level has not yet been determined. We therefore utilized multidimensional molecular data of 1577 meningioma samples from 6 independent cohorts enriched for clinically aggressive meningiomas to comprehensively interrogate the spectrum of CDKN2A alterations through DNA methylation, copy number variation, transcriptomics, and proteomics using an integrated molecular approach. Homozygous CDKN2A/B deletions were identified in only 7.1% of cases but were associated with significantly poorer outcomes compared to tumors without these deletions. Heterozygous CDKN2A/B deletions were identified in 2.6% of cases and had similarly poor outcomes as those with homozygous deletions. Among tumors with intact CDKN2A/B (without a homozygous or heterozygous deletion), we found a distinct difference in outcome based on mRNA expression of CDKN2A, with meningiomas that had elevated mRNA expression (CDKN2Ahigh) having a significantly shorter time to recurrence. The expression of CDKN2A was independently prognostic after accounting for copy number loss and consistently increased with WHO grade and more aggressive molecular and methylation groups irrespective of cohort. Despite the discordant and mutually exclusive status of the CDKN2A gene in these groups, both CDKN2Ahigh meningiomas and meningiomas with CDKN2A deletions were enriched for similar cell cycle pathways but at different checkpoints. High mRNA expression of CDKN2A was also associated with gene hypermethylation, Rb-deficiency, and lack of response to CDK inhibition. p16 immunohistochemistry could not reliably differentiate between meningiomas with and without CDKN2A deletions but appeared to correlate better with mRNA expression. These findings support the role of CDKN2A mRNA expression as a biomarker of clinically aggressive meningiomas with potential therapeutic implications.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Genes p16 , Meningioma/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Transcriptoma , Variações do Número de Cópias de DNA , Homozigoto , Deleção de Sequência , Neoplasias Meníngeas/genética
19.
Aging (Albany NY) ; 15(6): 2136-2157, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36961395

RESUMO

Cyclin-dependent kinase inhibitor 2A (CDKN2A) encodes the cell senescence regulator protein p16. The expression of p16 raises in cell senescence and has a nuclear regulation in cell aging. Meanwhile, it's also reported to inhibit the aggression of several cancers. But its clinical application and role in cancer immunotherapy needs further investigation. We collected the transcriptional data of pan-cancer and normal human tissues from The Cancer Genome Atlas and the Genotype-Tissue Expression databases. CBioPortal webtool was employed to mine the genomic alteration status of CDKN2A across cancers. Kaplan-Meier method and univariate Cox regression were performed for prognostic assessments across cancers, respectively. Gene Set Enrichment Analysis is the main method used to search the associated cancer hallmarks associated with CDKN2A. TIMER2.0 was used to analyze the immune cell infiltration relevance with CDKN2A in pan-cancer. The associations between CDKN2A and immunotherapy biomarkers or regulators were performed by spearman correlation analysis. We found CDKN2A is overexpressed in most cancers and exhibits prognosis predictive ability in various cancers. In addition, it is significantly correlated with immune-activated hallmarks, cancer immune cell infiltrations and immunoregulators. The most interesting finding is that CDKN2A can significantly predict anti-PDL1 therapy response. Finally, specific inhibitors which correlated with CDKN2A expression in different cancer types were also screened by using Connectivity Map (CMap) tool. The results revealed that CDKN2A acts as a robust cancer prognostic and immunotherapy biomarker. Its function in the regulation of cancer cell senescence might shape the tumor microenvironment and contribute to its predictive ability of immunotherapy.


Assuntos
Neoplasias , Humanos , Prognóstico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Genes p16 , Biomarcadores , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Senescência Celular/genética , Microambiente Tumoral/genética
20.
Sci Rep ; 13(1): 2959, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36805510

RESUMO

Genetic predisposition is an important risk factor for cancer in children and adolescents but detailed associations of individual genetic mutations to childhood cancer are still under intense investigation. Among pediatric cancers, sarcomas can arise in the setting of cancer predisposition syndromes. The association of sarcomas with these syndromes is often missed, due to the rarity and heterogeneity of sarcomas and the limited search of cancer genetic syndromes. This study included 43 pediatric and young adult patients with different sarcoma subtypes. Tumor profiling was undertaken using the Oncomine Childhood Cancer Research Assay (Thermo Fisher Scientific). Sequencing results were reviewed for potential germline alterations in clinically relevant genes associated with cancer predisposition syndromes. Jongmans´ criteria were taken into consideration for the patient selection. Fifteen patients were selected as having potential pathogenic germline variants due to tumor sequencing that identified variants in the following genes: CDKN2A, NF1, NF2, RB1, SMARCA4, SMARCB1 and TP53. The variants found in NF1 and CDKN2A in two different patients were detected in the germline, confirming the diagnosis of a cancer predisposition syndrome. We have shown that the results of somatic testing can be used to identify those at risk of an underlying cancer predisposition syndrome.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Adolescente , Adulto Jovem , Humanos , Criança , Síndrome , Sarcoma/diagnóstico , Sarcoma/genética , Genótipo , Genes p16 , Predisposição Genética para Doença , Proteínas Inibidoras de Quinase Dependente de Ciclina , DNA Helicases , Proteínas Nucleares , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...